RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2018, том 26, выпуск 1, страницы 47–64 (Mi adm669)

Эта публикация цитируется в 1 статье

RESEARCH ARTICLE

Module decompositions via Rickart modules

A. Harmancia, B. Ungorb

a Department of Mathematics, Hacettepe University, Turkey
b Department of Mathematics, Ankara University, Turkey

Аннотация: This work is devoted to the investigation of module decompositions which arise from Rickart modules, socle and radical of modules. In this regard, the structure and several illustrative examples of inverse split modules relative to the socle and radical are given. It is shown that a module $M$ has decompositions $M=\operatorname{Soc}(M) \oplus N$ and $M=\operatorname{Rad}(M) \oplus K$ where $N$ and $K$ are Rickart if and only if $M$ is $\operatorname{Soc}(M)$-inverse split and $\operatorname{Rad}(M)$-inverse split, respectively. Right $\operatorname{Soc}(\,\cdot\,)$-inverse split left perfect rings and semiprimitive right hereditary rings are determined exactly. Also, some characterizations for a ring $R$ which has a decomposition $R=\operatorname{Soc}(R_R)\oplus I$ with $I$ a hereditary Rickart module are obtained.

Ключевые слова: $\operatorname{Soc}(\,\cdot\,)$-inverse split module, $\operatorname{Rad}(\,\cdot\,)$-inverse split module, Rickart module.

MSC: 16D10, 16D40, 16D80

Поступила в редакцию: 22.10.2016
Исправленный вариант: 15.12.2017

Язык публикации: английский



© МИАН, 2024