RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2018, том 26, выпуск 1, страницы 110–123 (Mi adm674)

Эта публикация цитируется в 2 статьях

RESEARCH ARTICLE

On the saturations of submodules

Lokendra Paudela, Simplice Tchamnab

a Department of Mathematics, The University of Akron, Akron, OH 44325, USA
b Department of Mathematics, Georgia College & State University, Campus Box 017, Milledgeville, GA 31061, USA

Аннотация: Let $R\subseteq S$ be a ring extension, and let $A$ be an $R$-submodule of $S$. The saturation of $A$ (in $S$) by $\tau$ is set $A_{[\tau] }= \left\{x\in S\colon A \text{ for some } t\in \tau\right\}$, where $\tau$ is a multiplicative subset of $R$. We study properties of saturations of $R$-submodules of $S$. We use this notion of saturation to characterize star operations $\star$ on ring extensions $R\subseteq S$ satisfying the relation $(A\cap B)^{\star} = A^{\star}\cap B^{\star}$ whenever $A$ and $B$ are two $R$-submodules of $S$ such that $AS= BS = S$.

Ключевые слова: saturation, star operation, ring extension, prime spectrum, localization, flat module.

MSC: 13A15, 13A18, 13B02

Поступила в редакцию: 13.12.2016
Исправленный вариант: 17.01.2017

Язык публикации: английский



© МИАН, 2024