RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2018, том 26, выпуск 1, страницы 130–143 (Mi adm676)

Эта публикация цитируется в 1 статье

RESEARCH ARTICLE

Planarity of a spanning subgraph of the intersection graph of ideals of a commutative ring I, nonquasilocal case

P. Vadhel, S. Visweswaran

Department of Mathematics, Saurashtra University, Rajkot, 360 005 India

Аннотация: The rings considered in this article are nonzero commutative with identity which are not fields. Let $R$ be a ring. We denote the collection of all proper ideals of $R$ by $\mathbb{I}(R)$ and the collection $\mathbb{I}(R)\setminus \{(0)\}$ by $\mathbb{I}(R)^{*}$. Recall that the intersection graph of ideals of $R$, denoted by $G(R)$, is an undirected graph whose vertex set is $\mathbb{I}(R)^{*}$ and distinct vertices $I, J$ are adjacent if and only if $I\cap J\neq (0)$. In this article, we consider a subgraph of $G(R)$, denoted by $H(R)$, whose vertex set is $\mathbb{I}(R)^{*}$ and distinct vertices $I, J$ are adjacent in $H(R)$ if and only if $IJ\neq (0)$. The purpose of this article is to characterize rings $R$ with at least two maximal ideals such that $H(R)$ is planar.

Ключевые слова: quasilocal ring, special principal ideal ring, clique number of a graph, planar graph.

MSC: 13A15, 05C25

Поступила в редакцию: 22.09.2015
Исправленный вариант: 24.08.2018

Язык публикации: английский



© МИАН, 2024