RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2018, том 26, выпуск 2, страницы 170–189 (Mi adm679)

RESEARCH ARTICLE

Modules in which every surjective endomorphism has a $\delta$-small kernel

Shahabaddin Ebrahimi Atani, Mehdi Khoramdel, Saboura Dolati Pishhesari

Department of Mathematics, University of Guilan, P.O.Box 1914, Rasht, Iran

Аннотация: In this paper, we introduce the notion of $\delta$-Hopfian modules. We give some properties of these modules and provide a characterization of semisimple rings in terms of $\delta$-Hopfian modules by proving that a ring $R$ is semisimple if and only if every $R$-module is $\delta$-Hopfian. Also, we show that for a ring $R$, $\delta(R)=J(R)$ if and only if for all $R$-modules, the conditions $\delta$-Hopfian and generalized Hopfian are equivalent. Moreover, we prove that $\delta$-Hopfian property is a Morita invariant. Further, the $\delta$-Hopficity of modules over truncated polynomial and triangular matrix rings are considered.

Ключевые слова: Dedekind finite modules, Hopfian modules, generalized Hopfian modules, $\delta$-Hopfian modules.

MSC: 16D10, 16D40, 16D90

Поступила в редакцию: 15.12.2016
Исправленный вариант: 18.10.2018

Язык публикации: английский



© МИАН, 2024