RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2019, том 27, выпуск 1, страницы 1–11 (Mi adm687)

Эта публикация цитируется в 1 статье

RESEARCH ARTICLE

On hereditary reducibility of 2-monomial matrices over commutative rings

Vitaliy M. Bondarenkoa, Joseph Gildeab, Alexander A. Tylyshchakc, Natalia V. Yurchenkoc

a Institute of Mathematics, Tereshchenkivska str., 3, 01601 Kyiv, Ukraine
b Faculty of Science and Engineering, University of Chester, Thornton Science Park Pool Lane, Ince, CH2 4NU, Chester, UK
c Faculty of Mathematics, Uzhgorod National Univ., Universytetsyka str., 14, 88000 Uzhgorod, Ukraine

Аннотация: A 2-monomial matrix over a commutative ring $R$ is by definition any matrix of the form $M(t,k,n)=\Phi\left(\begin{smallmatrix}I_k&0\\0&tI_{n-k}\end{smallmatrix}\right)$, $0<k<n$, where $t$ is a non-invertible element of $R$, $\Phi$ the companion matrix to $\lambda^n-1$ and $I_k$ the identity $k\times k$-matrix. In this paper we introduce the notion of hereditary reducibility (for these matrices) and indicate one general condition of the introduced reducibility.

Ключевые слова: commutative ring, Jacobson radical, 2-monomial matrix, hereditary reducible matrix, similarity, linear operator, free module.

MSC: 15B33, 15A30

Поступила в редакцию: 10.02.2019

Язык публикации: английский



© МИАН, 2024