RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2019, том 27, выпуск 1, страницы 20–36 (Mi adm689)

Эта публикация цитируется в 1 статье

RESEARCH ARTICLE

Generalized classes of suborbital graphs for the congruence subgroups of the modular group

Pradthana Jaiponga, Wanchai Tapanyob

a Research Center in Mathematics and Applied Mathematics, Department of Mathematics, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
b Division of Mathematics and Statistics, Faculty of Science and Technology, Nakhon Sawan Rajabhat University, Nakhon Sawan, 60000, Thailand

Аннотация: Let $\Gamma$ be the modular group. We extend a nontrivial $\Gamma$-invariant equivalence relation on $\widehat{\mathbb{Q}}$ to a general relation by replacing the group $\Gamma_0(n)$ by $\Gamma_K(n)$, and determine the suborbital graph $\mathcal{F}^K_{u,n}$, an extended concept of the graph $\mathcal{F}_{u,n}$. We investigate several properties of the graph, such as, connectivity, forest conditions, and the relation between circuits of the graph and elliptic elements of the group $\Gamma_K(n)$. We also provide the discussion on suborbital graphs for conjugate subgroups of $\Gamma$.

Ключевые слова: modular group, congruence subgroups, suborbital graphs.

MSC: Primary 05C20, 05C40, 05C63; Secondary 05C05, 05C60, 20H05

Поступила в редакцию: 13.10.2016

Язык публикации: английский



© МИАН, 2024