RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2019, том 27, выпуск 1, страницы 50–57 (Mi adm691)

RESEARCH ARTICLE

On the number of topologies on a finite set

M. Yasir Kizmaz

Department of Mathematics, Middle East Technical University, Ankara 06531, Turkey

Аннотация: We denote the number of distinct topologies which can be defined on a set $X$ with $n$ elements by $T(n)$. Similarly, $T_0(n)$ denotes the number of distinct $T_0$ topologies on the set $X$. In the present paper, we prove that for any prime $p$, $T(p^k)\equiv k+1 \pmod p$, and that for each natural number $n$ there exists a unique $k$ such that $T(p+n)\equiv k \pmod p$. We calculate $k$ for $n=0,1,2,3,4$. We give an alternative proof for a result of Z. I. Borevich to the effect that $T_0(p+n)\equiv T_0(n+1) \pmod p$.

Ключевые слова: topology, finite sets, $T_0$ topology.

MSC: Primary 11B50; Secondary 11B05

Поступила в редакцию: 31.03.2017
Исправленный вариант: 06.10.2017

Язык публикации: английский



© МИАН, 2024