RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2019, том 27, выпуск 1, страницы 70–74 (Mi adm693)

RESEARCH ARTICLE

On free vector balleans

Igor Protasov, Ksenia Protasova

Department of Computer Science and Cybernetics, Kyiv University, Volodymyrska 64, 01033, Kyiv, Ukraine

Аннотация: A vector balleans is a vector space over $\mathbb{R}$ endowed with a coarse structure in such a way that the vector operations are coarse mappings. We prove that, for every ballean $(X, \mathcal{E})$, there exists the unique free vector ballean $\mathbb{V}(X, \mathcal{E})$ and describe the coarse structure of $\mathbb{V}(X, \mathcal{E})$. It is shown that normality of $\mathbb{V}(X, \mathcal{E})$ is equivalent to metrizability of $(X, \mathcal{E})$.

Ключевые слова: coarse structure, ballean, vector ballean, free vector ballean.

MSC: 46A17, 54E35

Поступила в редакцию: 10.03.2019

Язык публикации: английский



© МИАН, 2024