RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2019, том 27, выпуск 1, страницы 75–84 (Mi adm694)

Эта публикация цитируется в 1 статье

RESEARCH ARTICLE

Classification of homogeneous Fourier matrices

Gurmail Singh

Department of Mathematics and Statistics, University of Regina, Regina, Saskatchewan, Canada, S4S 0A2

Аннотация: Modular data are commonly studied in mathematics and physics. A modular datum defines a finite-dimensional representation of the modular group $\mathrm{SL}_2(\mathbb{Z})$. In this paper, we show that there is a one-to-one correspondence between Fourier matrices associated to modular data and self-dual $C$-algebras that satisfy a certain condition. We prove that a homogenous $C$-algebra arising from a Fourier matrix has all the degrees equal to $1$.

Ключевые слова: modular data, Fourier matrices, fusion rings, $C$-algebras.

MSC: Primary 05E30; Secondary 05E99, 81R05

Поступила в редакцию: 14.04.2017
Исправленный вариант: 19.02.2018

Язык публикации: английский



© МИАН, 2024