RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2019, том 27, выпуск 1, страницы 117–143 (Mi adm697)

RESEARCH ARTICLE

Planarity of a spanning subgraph of the intersection graph of ideals of a commutative ring II, Quasilocal Case

P. Vadhel, S. Visweswaran

Department of Mathematics, Saurashtra University, Rajkot, 360 005 India

Аннотация: The rings we consider in this article are commutative with identity $1\neq 0$ and are not fields. Let $R$ be a ring. We denote the collection of all proper ideals of $R$ by $\mathbb{I}(R)$ and the collection $\mathbb{I}(R)\setminus \{(0)\}$ by $\mathbb{I}(R)^{*}$. Let $H(R)$ be the graph associated with $R$ whose vertex set is $\mathbb{I}(R)^{*}$ and distinct vertices $I, J$ are adjacent if and only if $IJ\neq (0)$. The aim of this article is to discuss the planarity of $H(R)$ in the case when $R$ is quasilocal.

Ключевые слова: quasilocal ring, local Artinian ring, special principal ideal ring, planar graph.

MSC: 13A15, 05C25

Поступила в редакцию: 22.09.2015
Исправленный вариант: 24.08.2018

Язык публикации: английский



© МИАН, 2024