RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2019, том 27, выпуск 2, страницы 165–190 (Mi adm701)

Эта публикация цитируется в 1 статье

RESEARCH ARTICLE

Automorphism groups of superextensions of finite monogenic semigroups

Taras Banakhab, Volodymyr Gavrylkivc

a Ivan Franko National University of Lviv Ukraine
b Jan Kochanowski University in Kielce, Poland
c Vasyl Stefanyk Precarpathian National University, Ivano-Frankivsk, Ukraine

Аннотация: A family $\mathcal L$ of subsets of a set $X$ is called linked if $A\cap B\ne\emptyset$ for any $A,B\in\mathcal L$. A linked family $\mathcal M$ of subsets of $X$ is maximal linked if $\mathcal M$ coincides with each linked family $\mathcal L$ on $X$ that contains $\mathcal M$. The superextension $\lambda(X)$ of $X$ consists of all maximal linked families on $X$. Any associative binary operation $*\colon X\times X \to X$ can be extended to an associative binary operation $*\colon \lambda(X)\times\lambda(X)\to\lambda(X)$. In the paper we study automorphisms of the superextensions of finite monogenic semigroups and characteristic ideals in such semigroups. In particular, we describe the automorphism groups of the superextensions of finite monogenic semigroups of cardinality $\leq 5$.

Ключевые слова: monogenic semigroup, maximal linked upfamily, superextension, automorphism group.

MSC: 20D45, 20M15, 20B25

Поступила в редакцию: 05.08.2018
Исправленный вариант: 10.02.2019

Язык публикации: английский



© МИАН, 2024