RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2019, том 27, выпуск 2, страницы 243–251 (Mi adm705)

Эта публикация цитируется в 1 статье

RESEARCH ARTICLE

Solutions of the matrix linear bilateral polynomial equation and their structure

Nataliia S. Dzhaliuk, Vasyl' M. Petrychkovych

Pidstryhach Institute for Applied Problems of Mechanics and Mathematics of the NAS of Ukraine, Department of Algebra, 3b, Naukova Str., L'viv, 79060, Ukraine

Аннотация: We investigate the row and column structure of solutions of the matrix polynomial equation
$$ A(\lambda)X(\lambda)+Y(\lambda)B(\lambda)=C(\lambda), $$
where $A(\lambda), B(\lambda)$ and $C(\lambda)$ are the matrices over the ring of polynomials $\mathcal{F}[\lambda]$ with coefficients in field $\mathcal{F}$. We establish the bounds for degrees of the rows and columns which depend on degrees of the corresponding invariant factors of matrices $A (\lambda)$ and $ B(\lambda)$. A criterion for uniqueness of such solutions is pointed out. A method for construction of such solutions is suggested. We also established the existence of solutions of this matrix polynomial equation whose degrees are less than degrees of the Smith normal forms of matrices $A(\lambda)$ and $ B(\lambda)$.

Ключевые слова: matrix polynomial equation, solution, polynomial matrix, semiscalar equivalence.

MSC: 15A21, 15A24

Поступила в редакцию: 02.07.2018
Исправленный вариант: 05.12.2018

Язык публикации: английский



© МИАН, 2024