RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2019, том 27, выпуск 2, страницы 292–308 (Mi adm709)

Эта публикация цитируется в 2 статьях

RESEARCH ARTICLE

On some Leibniz algebras having small dimension

Viktoriia S. Yashchuk

Department of Geometry and Algebra, Faculty of Mechanics and Mathematics, Oles Honchar Dnipro National University, Gagarin ave., 72, Dnipro, 49010, Ukraine

Аннотация: The first step in the study of all types of algebras is the description of such algebras having small dimensions. The structure of 3-dimensional Leibniz algebras is more complicated than 1- and 2-dimensional cases. In this paper, we consider the structure of Leibniz algebras of dimension 3 over the finite fields. In some cases, the structure of the algebra essentially depends on the characteristic of the field, in others on the solvability of specific equations in the field, and so on.

Ключевые слова: Leibniz algebra, ideal, factor-algebra, Leibniz kernel, finite dimensional Leibniz algebra, nilpotent Leibniz algebra, left (right) center, Frattini subalgebra.

MSC: 17A32, 17A60

Поступила в редакцию: 28.02.2018
Исправленный вариант: 22.03.2018

Язык публикации: английский



© МИАН, 2024