RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2020, том 29, выпуск 1, страницы 66–73 (Mi adm739)

Эта публикация цитируется в 1 статье

RESEARCH ARTICLE

Finite groups with semi-subnormal Schmidt subgroups

V. N. Knyagina, V. S. Monakhov

Department of Mathematics, Francisk Skorina Gomel State University, Sovetskaya str., 104, Gomel 246019, Belarus

Аннотация: A Schmidt group is a non-nilpotent group in which every proper subgroup is nilpotent. A subgroup $A$ of a group $G$ is semi-normal in $G$ if there exists a subgroup $B$ of $G$ such that $G=AB$ and $AB_1$ is a proper subgroup of $G$ for every proper subgroup $B_1$ of $B$. If $A$ is either subnormal in $G$ or is semi-normal in $G$, then $A$ is called a semi-subnormal subgroup of $G$. In this paper, we establish that a group $G$ with semi-subnormal Schmidt $\{2,3\}$-subgroups is $3$-soluble. Moreover, if all 5-closed Schmidt $\{2,5\}$-subgroups are semi-subnormal in $G$, then $G$ is soluble. We prove that a group with semi-subnormal Schmidt subgroups is metanilpotent.

Ключевые слова: finite soluble group, Schmidt subgroup, semi-normal subgroup, subnormal subgroup.

MSC: 20E28, 20E32, 20E34

Поступила в редакцию: 23.04.2019

Язык публикации: английский

DOI: 10.12958/adm1376



Реферативные базы данных:


© МИАН, 2024