RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2020, том 29, выпуск 2, страницы 180–194 (Mi adm751)

Эта публикация цитируется в 1 статье

RESEARCH ARTICLE

On the structure of Leibniz algebras whose subalgebras are ideals or core-free

V. A. Сhupordiaa, L. A. Kurdachenkoa, N. N. Semkob

a Oles Honchar Dnipro National University, 72 Gagarin avenue, 49010, Dnipro, Ukraine
b University of the State Fiscal Service of Ukraine, 31 Universitetskaya str., 08205, Irpin, Ukraine

Аннотация: An algebra $L$ over a field $F$ is said to be a Leibniz algebra (more precisely, a left Leibniz algebra) if it satisfies the Leibniz identity: $[[a, b], c] = [a, [b, c]] - [b, [a, c]]$ for all $a, b, c \in L$. Leibniz algebras are generalizations of Lie algebras. A subalgebra $S$ of a Leibniz algebra $L$ is called a core-free, if $S$ does not include a non-zero ideal. We study the Leibniz algebras, whose subalgebras are either ideals or core-free.

Ключевые слова: Leibniz algebra, Lie algebra, ideal, core-free subalgebras, monolithic algebra, extraspecial algebra.

MSC: 17A32, 17A60, 17A99

Поступила в редакцию: 22.01.2020

Язык публикации: английский

DOI: 10.12958/adm1533



Реферативные базы данных:


© МИАН, 2024