RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2012, том 13, выпуск 2, страницы 237–272 (Mi adm76)

Эта публикация цитируется в 2 статьях

RESEARCH ARTICLE

The spectral measure of the Markov operator related to 3-generated 2-group of intermediate growth and its Jacobi parameters

R. I. Grigorchuka, Ya. S. Krylyukb

a Department of Mathematics, Mailstop 3368 Texas A&M University College Station, TX 77843-3368, USA
b Mathematics Department, De Anza College, 21250 Stevens Creek Blvd, Cupertino, CA 95014, USA

Аннотация: It is shown that the KNS-spectral measure of the typical Schreier graph of the action of $3$-generated $2$-group of intermediate growth constructed by the first author in 1980 on the boundary of binary rooted tree coincides with the Kesten’s spectral measure, and coincides (up to affine transformation of $\mathbb R$) with the density of states of the corresponding diatomic linear chain.
Jacoby matrix associated with Markov operator of simple random walk on these graphs is computed. It shown shown that KNS and Kesten's spectral measures of the Schreier graph based on the orbit of the point $1^{\infty}$ are different but have the same support and are absolutely continuous with respect to the Lebesgue measure.

Ключевые слова: group of intermediate growth, diatomic linear chain, random walk, spectral measure, Schreier graph, discrete Laplacian.

MSC: 20F, 20P, 37A, 60J, 82D

Поступила в редакцию: 03.04.2012
Принята в печать: 03.04.2012

Язык публикации: английский



Реферативные базы данных:


© МИАН, 2025