RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2020, том 30, выпуск 1, страницы 15–25 (Mi adm762)

Эта публикация цитируется в 1 статье

RESEARCH ARTICLE

Zero-sum subsets of decomposable sets in Abelian groups

T. Banakhab, A. Ravskyc

a Faculty of Mechanics and Mathematics, Ivan Franko National University, Lviv, Universytet’ska 1, 79602, Ukraine
b Jan Kochanowski University in Kielce, Poland
c Department of Analysis, Geometry and Topology, Pidstryhach Institute for Applied Problems of Mechanics and Mathematics National Academy of Sciences of Ukraine, Naukova 3-b, Lviv, 79060, Ukraine

Аннотация: A subset $D$ of an abelian group is decomposable if $\varnothing\ne D\subset D+D$. In the paper we give partial answers to an open problem asking whether every finite decomposable subset $D$ of an abelian group contains a non-empty subset $Z\subset D$ with $\sum Z=0$. For every $n\in\mathbb N$ we present a decomposable subset $D$ of cardinality $|D|=n$ in the cyclic group of order $2^n-1$ such that $\sum D=0$, but $\sum T\ne 0$ for any proper non-empty subset $T\subset D$. On the other hand, we prove that every decomposable subset $D\subset\mathbb R$ of cardinality $|D|\le 7$ contains a non-empty subset $T\subset D$ of cardinality $|Z|\le\frac12|D|$ with $\sum Z=0$. For every $n\in\mathbb N$ we present a subset $D\subset\mathbb Z$ of cardinality $|D|=2n$ such that $\sum Z=0$ for some subset $Z\subset D$ of cardinality $|Z|=n$ and $\sum T\ne 0$ for any non-empty subset $T\subset D$ of cardinality $|T|<n=\frac12|D|$. Also we prove that every finite decomposable subset $D$ of an Abelian group contains two non-empty subsets $A$, $B$ such that $\sum A+\sum B=0$.

Ключевые слова: decomposable set, abelian group, sum-set.

MSC: 05E15

Поступила в редакцию: 18.11.2019
Исправленный вариант: 21.03.2020

Язык публикации: английский

DOI: 10.12958/adm1494



Реферативные базы данных:


© МИАН, 2024