RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2020, том 30, выпуск 2, страницы 290–304 (Mi adm784)

RESEARCH ARTICLE

Endomorphisms of Clifford semigroups with injective structure homomorphisms

S. Worawiseta, J. Koppitzb

a Department of Mathematics, Faculty of Science, Khon Kaen University, Khon Kaen, Thailand
b Institute of Mathematics and Informatics, Bulgarian Academy of Sciences, Acad. G. Bonchev Str. bl. 8, 1113 Sofia, Bulgaria

Аннотация: In the present paper, we study semigroups of endomorphisms on Clifford semigroups with injective structure homomorphisms, where the semilattice has a least element. We describe such Clifford semigroups having a regular endomorphism monoid. If the endomorphism monoid on the Clifford semigroup is completely regular then the corresponding semilattice has at most two elements. We characterize all Clifford semigroups $G_{\alpha}\cup G_{\beta}$ ($\alpha >\beta $) with an injective structure homomorphism, where $G_{\alpha}$ has no proper subgroup, such that the endomorphism monoid is completely regular. In particular, we consider the case that the structure homomorphism is bijective.

Ключевые слова: Clifford semigroups, endomorphism monoid, regular.

MSC: 20M10, 20M15

Поступила в редакцию: 06.02.2020
Исправленный вариант: 09.10.2020

Язык публикации: английский

DOI: 10.12958/adm1543



Реферативные базы данных:


© МИАН, 2024