RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2021, том 31, выпуск 2, страницы 302–322 (Mi adm802)

Эта публикация цитируется в 1 статье

RESEARCH ARTICLE

The center of the wreath product of symmetric group algebras

O. Tout

Department of Mathematics, College of Science, Sultan Qaboos University, P.O. Box 36, Al Khod 123, Sultanate of Oman

Аннотация: We consider the wreath product of two symmetric groups as a group of blocks permutations and we study its conjugacy classes. We give a polynomiality property for the structure coefficients of the center of the wreath product of symmetric group algebras. This allows us to recover an old result of Farahat and Higman about the polynomiality of the structure coefficients of the center of the symmetric group algebra and to generalize our recent result about the polynomiality property of the structure coefficients of the center of the hyperoctahedral group algebra.

Ключевые слова: symmetric groups, wreath products, structure coefficients, centers of finite groups algebras.

MSC: 05E10, 05E16, 20C30

Поступила в редакцию: 13.02.2019
Исправленный вариант: 16.04.2019

Язык публикации: английский

DOI: 10.12958/adm1338



© МИАН, 2024