RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2021, том 32, выпуск 1, страницы 138–146 (Mi adm811)

RESEARCH ARTICLE

Cancellation ideals of a ring extension

S. Tchamna

Department of Mathematics, Georgia College, Milledgeville, GA, USA

Аннотация: We study properties of cancellation ideals of ring extensions. Let $R \subseteq S$ be a ring extension. A nonzero $S$-regular ideal $I$ of $R$ is called a (quasi)-cancellation ideal of the ring extension $R \subseteq S$ if whenever $IB = IC$ for two $S$-regular (finitely generated) $R$-submodules $B$ and $C$ of $S$, then $B =C$. We show that a finitely generated ideal $I$ is a cancellation ideal of the ring extension $R\subseteq S$ if and only if $I$ is $S$-invertible.

Ключевые слова: ring extension, cancellation ideal, pullback diagram.

MSC: 13A15, 13A18, 13B02

Поступила в редакцию: 26.07.2019
Исправленный вариант: 30.10.2020

Язык публикации: английский

DOI: 10.12958/adm1424



© МИАН, 2024