RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2021, том 32, выпуск 2, страницы 161–184 (Mi adm813)

RESEARCH ARTICLE

On the nilpotence of the prime radical in module categories

C. Arellanoa, J. Castrob, J. Ríosa

a Instituto de Matemáticas, Universidad Nacional Autónoma de México, Area de la Investigaci on Científica, Circuito Exterior, C.U., 04510 México, D.F. México
b Escuela de Ingeniería y Ciencias, Instituto Tecnológico y de Estudios Superiores de Monterrey, Calle del Puente 222, Tlalpan, 14380 México, D.F. México

Аннотация: For $M\in R$-Mod and $\tau$ a hereditary torsion theory on the category $\sigma [M]$ we use the concept of prime and semiprime module defined by Raggi et al. to introduce the concept of $\tau$-pure prime radical $\mathfrak{N}_{\tau}(M) =\mathfrak{N}_{\tau}$ as the intersection of all $\tau$-pure prime submodules of $M$. We give necessary and sufficient conditions for the $\tau$-nilpotence of $\mathfrak{N}_{\tau}(M) $. We prove that if $M$ is a finitely generated $R$-module, progenerator in $\sigma [M]$ and $\chi\neq \tau$ is FIS-invariant torsion theory such that $M$ has $\tau$-Krull dimension, then $\mathfrak{N}_{\tau}$ is $\tau$-nilpotent.

Ключевые слова: prime modules, semiprime modules, Goldie modules, torsion theory, nilpotent ideal, nilpotence.

MSC: 06F25, 16S90, 16D50, 16P50, 16P70

Поступила в редакцию: 04.06.2020
Исправленный вариант: 06.01.2021

Язык публикации: английский

DOI: 10.12958/adm1634



© МИАН, 2024