RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2021, том 32, выпуск 2, страницы 226–235 (Mi adm817)

RESEARCH ARTICLE

Maximal subgroup growth of a few polycyclic groups

A. Kelley, E. Wolfe

Colorado College, 14 E. Cache La Poudre St., Colorado Springs, CO, 80903, USA

Аннотация: We give here the exact maximal subgroup growth of two classes of polycyclic groups. Let $G_k = \langle x_1, x_2, \dots , x_k \mid x_ix_jx_i^{-1}x_j \text{ for all } i < j \rangle$, so $G_k = \mathbb{Z} \rtimes (\mathbb{Z} \rtimes (\mathbb{Z} \rtimes \dots \rtimes \mathbb{Z}))$. Then for all integers $k \geq 2$, we calculate $m_n(G_k)$, the number of maximal subgroups of $G_k$ of index $n$, exactly. Also, for infinitely many groups $H_k$ of the form $\mathbb{Z}^2 \rtimes G_2$, we calculate $m_n(H_k)$ exactly.

Ключевые слова: maximal subgroup growth, polycyclic groups, semidirect products.

MSC: 20E07

Поступила в редакцию: 03.12.2019
Исправленный вариант: 04.01.2021

Язык публикации: английский

DOI: 10.12958/adm1506



© МИАН, 2024