Аннотация:
We give here the exact maximal subgroup growth of two classes of polycyclic groups. Let $G_k = \langle x_1, x_2, \dots , x_k \mid x_ix_jx_i^{-1}x_j \text{ for all } i < j \rangle$, so $G_k = \mathbb{Z} \rtimes (\mathbb{Z} \rtimes (\mathbb{Z} \rtimes \dots \rtimes \mathbb{Z}))$. Then for all integers $k \geq 2$, we calculate $m_n(G_k)$, the number of maximal subgroups of $G_k$ of index $n$, exactly. Also, for infinitely many groups $H_k$ of the form $\mathbb{Z}^2 \rtimes G_2$, we calculate $m_n(H_k)$ exactly.