RUS  ENG
Полная версия
ЖУРНАЛЫ // Algebra and Discrete Mathematics // Архив

Algebra Discrete Math., 2021, том 32, выпуск 2, страницы 236–240 (Mi adm818)

Эта публикация цитируется в 1 статье

RESEARCH ARTICLE

On the kernels of higher $R$-derivations of $R[x_1,\dots,x_n]$

S. Kour

Department of Mathematics, Indian Institute of Technology, New Delhi, India

Аннотация: Let $R$ be an integral domain and $A= R[x_1, \dots, x_n]$ be the polynomial ring in $n$ variables. In this article, we study the kernel of higher $R$-derivation $D$ of $A$. It is shown that if $R$ is a HCF ring and $\operatorname{tr.deg}_R(A^D) \leq 1$ then $A^D = R[f]$ for some $f\in A$.

Ключевые слова: derivation, higher derivation, kernel of derivation.

MSC: 13N15, 13C99

Поступила в редакцию: 17.08.2018
Исправленный вариант: 29.07.2020

Язык публикации: английский

DOI: 10.12958/adm1236



© МИАН, 2024