Эта публикация цитируется в
2 статьях
RESEARCH ARTICLE
On certain semigroups of contraction mappings of a finite chain
A. Umar Department of Mathematics, The Petroleum Institute, Sas Nakhl, Khalifa University of Science and Technology, P.O. Box 2533, Abu Dhabi, UAE
Аннотация:
Let
$[n]=\{1,2,\dots,n\}$ be a finite chain and let
$\mathcal{P}_{n}$ (resp.,
$\mathcal{T}_{n}$) be the semigroup of partial transformations on
$[n]$ (resp., full transformations on
$[n]$). Let $\mathcal{CP}_{n}=\{\alpha\in \mathcal{P}_{n}\colon (\text{for all }x,y\in \operatorname{Dom}\alpha)\ |x\alpha-y\alpha|\leq|x-y|\}$ (resp., $\mathcal{CT}_{n}=\{\alpha\in \mathcal{T}_{n}\colon (\text{for all }x,y\in [n])\ |x\alpha-y\alpha|\leq|x-y|\}$) be the subsemigroup of partial contraction mappings on
$[n]$ (resp., subsemigroup of full contraction mappings on
$[n]$). We characterize all the starred Green's relations on
$\mathcal{CP}_{n}$ and it subsemigroup of order preserving and/or order reversing and subsemigroup of order preserving partial contractions on
$[n]$, respectively. We show that the semigroups
$\mathcal{CP}_{n}$ and
$\mathcal{CT}_{n}$, and some of their subsemigroups are left abundant semigroups for all
$n$ but not right abundant for
$n\geq 4$. We further show that the set of regular elements of the semigroup
$\mathcal{CT}_{n}$ and its subsemigroup of order preserving or order reversing full contractions on
$[n]$, each forms a regular subsemigroup and an orthodox semigroup, respectively.
Ключевые слова:
starred Green's relations, orthodox semigroups, quasi-adequate semigroups, regularity.
MSC: 20M20 Поступила в редакцию: 02.05.2021
Исправленный вариант: 02.10.2021
Язык публикации: английский
DOI:
10.12958/adm1816