Аннотация:
We prove that rationally connected Calabi–Yau 3-folds with Kawamata log terminal (klt) singularities form a birationally bounded family, or more generally, rationally connected 3-folds of $\epsilon$-CY type form a birationally bounded family for $\epsilon>0$. Moreover, we show that the set of $$\epsilon-lc log Calabi–Yau pairs $(X,B)$ with coefficients of $B$ bounded away from zero is log bounded modulo flops. As a consequence, we deduce that rationally connected klt Calabi–Yau 3-folds with mld bounded away from 1 are bounded modulo flops.