RUS  ENG
Полная версия
ЖУРНАЛЫ // Advances in Mathematics // Архив

Adv. Math., 2021, том 378, страницы 107541–32 (Mi admat23)

Эта публикация цитируется в 12 статьях

Birational boundedness of rationally connected Calabi-Yau 3-folds

Weichung Chena, Gabriele Di Cerbob, Jingjun Hanc, Chen Jiangd, Roberto Svaldie

a Graduate School of Mathematical Sciences, the University of Tokyo, Tokyo, Japan
b Department of Mathematics, Princeton University, Princeton, NJ, USA
c Department of Mathematics, Johns Hopkins University, Baltimore, MD, USA
d Shanghai Center for Mathematical Sciences, Fudan University, Shanghai, China
e EPFL, Lausanne, Switzerland

Аннотация: We prove that rationally connected Calabi–Yau 3-folds with Kawamata log terminal (klt) singularities form a birationally bounded family, or more generally, rationally connected 3-folds of $\epsilon$-CY type form a birationally bounded family for $\epsilon>0$. Moreover, we show that the set of $$\epsilon-lc log Calabi–Yau pairs $(X,B)$ with coefficients of $B$ bounded away from zero is log bounded modulo flops. As a consequence, we deduce that rationally connected klt Calabi–Yau 3-folds with mld bounded away from 1 are bounded modulo flops.

Язык публикации: английский


 Англоязычная версия: DOI: 10.1016/j.aim.2020.107541

Реферативные базы данных:


© МИАН, 2024