RUS  ENG
Полная версия
ЖУРНАЛЫ // Advances in Mathematics // Архив

Adv. Math., 2014, том 252, страницы 586–611 (Mi admat8)

Эта публикация цитируется в 11 статьях

Sabitov polynomials for volumes of polyhedra in four dimensions

A. A. Gaifullinab

a Institute for Information Transmission Problems, Bolshoy Karetny per. 19, Moscow, 127994, Russia
b Steklov Mathematical Institute, Gubkina str. 8, Moscow, 119991, Russia

Аннотация: In 1996 I.Kh. Sabitov proved that the volume of a simplicial polyhedron in a 3-dimensional Euclidean space is a root of certain monic polynomial with coefficients depending on the combinatorial type and on edge lengths of the polyhedron only. Moreover, the coefficients of this polynomial are polynomials in edge lengths of the polyhedron. This result implies that the volume of a simplicial polyhedron with fixed combinatorial type and edge lengths can take only finitely many values. In particular, this yields that the volume of a flexible polyhedron in a 3-dimensional Euclidean space is constant. Until now it has been unknown whether these results can be obtained in dimensions greater than 3. In this paper we prove that all these results hold for polyhedra in a 4-dimensional Euclidean space.

MSC: 51M25, 52B11, 13P15

Поступила в редакцию: 22.10.2011
Принята в печать: 18.11.2013

Язык публикации: английский

DOI: 10.1016/j.aim.2013.11.005



Реферативные базы данных:


© МИАН, 2025