RUS  ENG
Полная версия
ЖУРНАЛЫ // Annales de l'Institut Fourier // Архив

Ann. Inst. Fourier (Grenoble), 2014, том 64, выпуск 3, страницы 893–907 (Mi aif2)

Эта публикация цитируется в 5 статьях

Finiteness of Ergodic Unitarily Invariant Measures on Spaces of Infinite Matrices

Alexander I. Bufetov


Аннотация: The main result of this note, Theorem 1.3, is the following: a Borel measure on the space of infinite Hermitian matrices, that is invariant and ergodic under the action of the infinite unitary group and that admits well-defined projections onto the quotient space of “corners" of finite size, must be finite. A similar result, Theorem 1.1, is also established for unitarily invariant measures on the space of all infinite complex matrices. These results imply that the infinite Hua-Pickrell measures of Borodin and Olshanski have finite ergodic components.

MSC: 37A15, 37A25, 28D15, 22E66

Язык публикации: английский

DOI: 10.5802/aif.2867



Реферативные базы данных:


© МИАН, 2025