RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и логика // Архив

Алгебра и логика, 1973, том 12, номер 5, страницы 550–576 (Mi al1399)

Эта публикация цитируется в 7 статьях

О полных теориях с конечным числом счётных моделей

М. Г. Перетятькин


Аннотация: Пусть $(\mathfrak{M},\nu)$ — сильно конструктивное дискретно упорядоченное множество. Доказывается, что существует обогащение $\mathfrak{M}^{\ast}$ модели $\mathfrak{M}$ одним одноместным предикатом такое, что $(\mathfrak{M}^{\ast},\nu)$ — сильно конструктивная модель и каждый элемент из $\vert\mathfrak{M}^{\ast}\vert$ формульно определим в $\mathfrak{M}^{\ast}$. Следствие: существует счётная сильно конструктивная модель сигнатуры $\sigma=\langle <,P^{1}\rangle$, у которой каждый элемент формульно определим и которая не имеет собственных конструктивных элементарных расширений.

УДК: 517.15

Поступило: 29.08.1973



Реферативные базы данных:


© МИАН, 2024