RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и логика // Архив

Алгебра и логика, 2006, том 45, номер 4, страницы 484–499 (Mi al156)

Эта публикация цитируется в 12 статьях

Условия дистрибутивности решёток доминионов в квазимногообразиях абелевых групп

С. А. Шахова


Аннотация: Пусть $\mathcal{M}$ – произвольное квазимногообразие абелевых групп, $L_{q}(\mathcal{M})$ – решётка подквазимногообразий квазимногообразия $\mathcal{M}$, ${\rm dom}^{\mathcal{M}}_{G}(H)$ – доминион подгруппы $H$ группы $G$ в квазимногообразии $\mathcal{M}$, $G/{\rm dom}^{\mathcal{M}}_{G}(H)$ – конечно-порождённая группа. Известно, что множество $L(G,H,\mathcal{M})=\{{\rm dom}^{\mathcal{N}}_{G}(H)\mid \mathcal{N}\in L_{q}(\mathcal{M})\}$ образует решётку относительно теоретико-множественного включения. Исследуется строение ${\rm dom}^{\mathcal{M}}_{G}(H)$. Доказывается, что решётка $L(G,H,\mathcal{M})$ полудистрибутивна, указываются необходимые и достаточные условия дистрибутивности этой решётки.

Ключевые слова: группа, доминион, квазимногообразие, решётка.

УДК: 512.54.01

Поступило: 18.03.2006


 Англоязычная версия: Algebra and Logic, 2006, 45:4, 277–285

Реферативные базы данных:


© МИАН, 2024