RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и логика // Архив

Алгебра и логика, 1978, том 17, номер 6, страницы 705–726 (Mi al1630)

Эта публикация цитируется в 9 статьях

Конечная базируемость многообразий с двучленным тождеством

Ю. А. Медведев


Аннотация: Изучаются вопросы конечной базируемости многообразий алгебр над нётеровым ассоциативно-коммутативным кольцом с единицей. Вводится понятие правильного многообразия, и доказывается шпехтовость этого многообразия в случае выполнения в нем двучленного тождества определенного вида. В качестве следствий доказывается шпехтовость многообразий альтернативных, левонильпотентных правоальтернативных, йордановых, мальцевских, $(-1, 1 )$-алгебр, в которых квадрат свободной алгебры аннулирует некоторую степень этой алгебры. Кроме того, доказана шпехтовость многообразий алгебр Ли, удовлетворяющих двучленному тождеству определенного вида. Наконец, как следствие получен результат Бенга и Манделберга (РЖМат, 1975, 10А290), устанавливающий шпехтовость многообразий алгебр с центральным свойством, т.е. таких многообразий, в которых некоторая степень свободной алгебры лежит в центре этой алгебры.

УДК: 519.48

Поступило: 12.06.1978



Реферативные базы данных:


© МИАН, 2024