RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и логика // Архив

Алгебра и логика, 1980, том 19, номер 1, страницы 81–90 (Mi al1677)

Эта публикация цитируется в 1 статье

Теорема об отщеплении радикала для альтернативных алгебр над кольцом Гензеля

В. Н. Желябин


Аннотация: Пусть $K$ — ассоциативно-коммутативное кольцо с единицей. Альтернативная алгебра $A$ называется неразветвленной над $K$, если $J(A)=J(K)A$, где $J(A)$, $J(K)$ — квазирегулярные радикалы алгебры $A$ и кольца $K$ соответственно. Доказана следующая
Теорема. Пусть $A$ — альтернативная алгебра с единицей над локальным кольцом Гензеля $K$, конечно-порожденная как $K$-модуль. Предположим, что $1/2\in K$ и алгебра $A/J(A)$ сепарабельна над полем $K/J(K)$. Тогда в $A$ существует такая неразветвленная подалгебра $A_0$, что $A=A_0+J(A)$.

УДК: 519.48

Поступило: 23.05.1979



Реферативные базы данных:


© МИАН, 2024