Аннотация:
Исследуются логические аспекты теории модулей над ассоциативным кольцом с единицей. Доказывается, что теория всех ненулевых модулей над таким кольцом модельно полна тогда и только тогда, когда основное кольцо является простым бесконечным и регулярным в смысле Неймана. Кроме того, в том случае, когда существует теория инъективных левых модулей (т. е. когда основное кольцо нетерово слева), показано, что полнота этой теории равносильна ее модельной полноте и равносильна тому, что основное кольцо является бесконечным артиновым, причем фактор-кольцо по радикалу Джекобсона просто.