RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и логика // Архив

Алгебра и логика, 1982, том 21, номер 3, страницы 283–320 (Mi al1772)

Эта публикация цитируется в 2 статьях

Нетабличность логики ${\rm S}4$ по функциональной полноте

М. Ф. Раца


Аннотация: Для модальной логики ${\rm S}4$ найдены функционально полные и независимые в ней множества (формул) любой конечной мощности. Построен пример счетного семейства предполных в этой логике классов модальных формул. То же самое сделано для континуального множества других модальных логик, являющихся ее (нормальными) расширениями. Для этих логик доказано, что они не являются финитно-аппроксимируемыми по функциональной полноте. Таким образом, логика ${\rm S}4$ и многие ее расширения с функциональной точки зрения существенно сложнее всех табличных логик, а также интуиционистской логики высказываний, модальной логики ${\rm S}5$ и даже классической логики предикатов первого порядка.

УДК: 510.2/.6+519.7

Поступило: 24.03.1981



Реферативные базы данных:


© МИАН, 2024