Аннотация:
Пусть $G$ – $p$-группа, $a$ – ее элемент простого порядка $p$, и $C_G(a)$ – черниковская группа. Доказывается, что либо $G$ – черниковская группа, либо $G$ обладает не локально конечным сечением по черниковской подгруппе, в котором максимальная локально конечная подгруппа, содержащая образ элемента $a$, единственна. Кроме того, множество групп, удовлетворяющих первой части альтернативы счетно, а второй части – континуально для каждого нечетного $p$.