Аннотация:
Пусть $A$ – конечное множество. Для любого клона $C$ на $A$ совокупность всех унарных функций из $A$ является моноидом преобразований множества $A$. Изучается разбиение решетки клонов на интервалы, где два клона принадлежат одному классу разбиения тогда и только тогда, когда они имеют одинаковые моноиды унарных функций. Исследуется вопрос А. Сендреи о мощности таких интервалов. Находятся новые примеры континуальных, одноэлементных и конечных, но не одноэлементных интервалов. Кроме того, доказывается, что любая решетка, являющаяся не более чем счетным прямым произведением конечных цепей, изоморфна некоторому интервалу в решетке клонов. Попутно устанавливается число $E$-минимальных алгебр на конечном множестве.