Аннотация:
Исследуется мощность связных компонент графа $\Gamma_a$, определяемого следующим образом. Пусть $G$ – группа, $a$ – элемент из $G$. Множество вершин графа $\Gamma_a$ – это класс сопряженных элементов $\mathrm{Cl}_G(a)$, две вершины $x$, $y$ графа $\Gamma_a$ соединены ребром тогда и только тогда, когда $x=y$. Если пересечение $\mathrm{C}_G(a)\cap\mathrm{Cl}_G(a)$ конечно, то граф $\Gamma_a$ локально конечен. Доказывается конечность связных компонент локально конечного графа $\Gamma_a$ в некоторых классах групп.