RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и логика // Архив

Алгебра и логика, 1997, том 36, номер 2, страницы 219–238 (Mi al2390)

Эта публикация цитируется в 1 статье

Конечность по Ширшову над кольцами констант

В. К. Харченко

Институт математики СО РАН, г. Новосибирск

Аннотация: Пусть $L$ – конечномерная ограниченная дифференциальная $C$-алгебра Ли $R$-непрерывных дифференцирований первичного кольца $R$ характеристики $p>0$ с обобщенным центроидом $C$. Доказывается, что если ассоциативная внутренняя часть $L$ квазифробениусова, то в кольце $R$ существуют ненулевой элемент $a$ и элементы $v_1,\dots, v_n$, для которых при любом $x\in R$ имеет место разложение $ax=\sum_{i=1}^nv_i\tau_i(x)$, где $\tau_i$ – некоторые гомоморфизмы правых $R^L$-модулей $\tau_i\colon R\to R^L=\{r\in R\mid\forall\mu\in L\,r^\mu=0\}$. Отсюда вытекает соотношение конечности типа локальной конечности по Ширшову кольца над подкольцом. Рассматривается строение $(R,R^L)$-подбимодулей в левом мартиндейловском кольце частных.

УДК: 512.552.4

Поступило: 16.11.1995


 Англоязычная версия: DOI: 10.1007/BF02672480

Реферативные базы данных:


© МИАН, 2024