Аннотация:
Теория множеств ZFI', не использующая закона исключенного третьего $\varphi\vee\neg\varphi$ для всех формул $\varphi$, сохраняя высокие выразительные возможности классической теории множеств ZF, имеет многие черты эффективной теории. В работе строится широкий класс формул $\zeta$, для которых из ZF $\vdash\zeta$ следует ZFI' $\vdash\zeta$. Этот результат обобщает известную теорему Х. Фридмана об АЕ-арифметических формулах. Кроме того, доказываются теоремы переноса для классической логики и для случая колец, в частности, даются обобщения теорем Гильберта о нулях и Артина об упорядоченных полях на случай регулярных $f$-колец вместе с соответствующими верхними оценками.