Аннотация:
С. С. Гончаров и С. А. Бадаев показали, что для $n\geqslant 2$ существуют бесконечные семейства, полурешетки Роджерса которых содержат идеалы без минимальных элементов. В связи с этим ими был поставлен вопрос о существовании примеров семейств, не обладающих этим свойством. Дается отрицательный ответ на этот вопрос. Доказывается, что вне зависимости от выбора семейства класс полурешеток, являющихся главными идеалами полурешетки Роджерса этого семейства, достаточно широк: он включает в себя как фактор-решетку решетки рекурсивно перечислимых множеств по модулю конечных множеств, так и семейство начальных сегментов полурешетки $m$-степеней, порожденных иммунными множествами.