Аннотация:
Группа $G$ называется жёсткой, если в ней существует нормальный ряд $$G=G_1>G_2>\ldots> G_m>G_{m+1}=1,$$ факторы которого $G_i/G_{i+1}$ абелевы и, рассматриваемые как правые $\mathbb{Z}[G/G_i]$-модули, не имеют модульного кручения. Жёсткая группа $G$ называется делимой, если элементы модуля $G_i/G_{i+1}$ делятся на ненулевые элементы кольца $\mathbb{Z} [G/G_i]$. Описываются определимые в сигнатуре теории групп без параметров и с параметрами подгруппы делимой жёсткой группы.