Аннотация:
Рассматриваются алгебры бинарных формул для композиций теорий как в общем случае, так и для $\aleph_0$-категоричных, сильно минимальных и стабильных теорий, линейных предпорядков, циклических предпорядков и серий конечных структур. Показывается, что $e$-определимые композиции сохраняют изоморфизмы, элементарную эквивалентность и имеют базируемость, образованную базисными формулами исходных теорий. Даются критерии сохранения $\aleph_0$-категоричности, сильной минимальности и стабильности $e$-определимых композиций. Устанавливается, что $e$-определимые композиции теорий задают композиции алгебр бинарных формул. Приводится описание видов этих алгебр относительно композиций с линейными порядками, циклическими порядками и сериями конечных структур.