RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и логика // Архив

Алгебра и логика, 2022, том 61, номер 3, страницы 280–307 (Mi al2711)

Эта публикация цитируется в 1 статье

Минимальные обобщённо вычислимые нумерации и семейства позитивных предпорядков

Ф. Ракымжанкызыa, Н. А. Баженовb, А. А. Исаховa, Б. С. Калмурзаевca

a Казахстанско-Британский техн. ун-т, г. Алма-Ата, КАЗАХСТАН
b Ин-т матем. им. С. Л. Соболева СО РАН, г. Новосибирск, РОССИЯ
c Казахский нац. ун-т им. аль-Фараби, г. Алма-Ата, КАЗАХСТАН

Аннотация: Изучаются $A$-вычислимые нумерации для различных естественных классов множеств. Для произвольного оракула $A\geq_T\mathbf{0}'$ строится пример $A$-вычислимого семейства $S$, такого что каждая его $A$-вычислимая нумерация обладает минимальным накрытием, и при этом $S$ не удовлетворяет достаточным условиям существования минимальных накрытий из работы С. А. Бадаева и С. Ю. Подзорова [Сиб. матем. ж., 43, № 4 (2002), 769–778]. Доказывается, что семейство всех позитивных линейных предпорядков имеет $A$-вычислимую нумерацию в том и только том случае, если $A' \geq_T\mathbf{0}''$. Устанавливается серия результатов о минимальных $A$-вычислимых нумерациях, в частности фридберговых и позитивных неразрешимых нумерациях.

Ключевые слова: $A$-вычислимая нумерация, позитивный линейный предпорядок, полурешётка Роджерса, фридбергова нумерация, позитивная нумерация, минимальное накрытие.

УДК: 510.5

Поступило: 03.11.2021
Окончательный вариант: 28.10.2022

DOI: 10.33048/alglog.2022.61.302



Реферативные базы данных:


© МИАН, 2024