Аннотация:
Рассматривается класс обобщённых дифференцирований, возникающий в связи с задачей присоединения единицы к алгебре с обобщённым дифференцированием, а также поиска обёртывающих для алгебр Новикова–Пуассона. Приводятся условия существования локализации алгебры с тернарным дифференцированием, а также условия, при которых по алгебре с тернарным дифференцированием можно построить алгебру Новикова–Пуассона и йорданову супералгебру. И наконец, показывается, как простота алгебры с обобщённым дифференцированием по Брешару связана с простотой соответствующей алгебры Новикова.