RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и логика // Архив

Алгебра и логика, 2000, том 39, номер 4, страницы 395–440 (Mi al284)

Эта публикация цитируется в 9 статьях

Вычисление коммутаторной длины в свободных группах

В. Г. Бардаков

Институт математики им. С. Л. Соболева СО РАН

Аннотация: Изучается коммутаторная длина в свободных группах (под коммутаторной длиной $\mathrm{cl}(g)$ элемента $g$ из коммутанта $G'$ группы $G$ понимается наименьшее натуральное число $k$ такое, что $g$ является произведением $k$ коммутаторов). Строится чисто алгебраический алгоритм вычисления коммутаторной длины в свободной группе $F_2$ (теорема 1). Кроме того, для любых элемента $z\in F_2'$ и натурального $m$ приводится оценка: $\mathrm{cl}(z^m)\geqslant(ms(z)+6)/12$, где $s(z)$ – некоторое неотрицательное число, определенное элементом $z$ (теорема 2). Эта оценка используется для вычисления коммутаторной длины некоторых конкретных элементов. По аналогии с понятием ширины коммутанта, известного из теории групп, вводится понятие ширины производной подалгебры. Ширина производной подалгебры вычисляется для алгебры пар $P$, а также для соответствующей ей алгебры Ли $P_L$. Алгебра пар естественным образом возникает при доказательстве теоремы 2 и обладает рядом интересных свойств. Установливается, что в свободной группе $F_{2k}$ со свободными порождающими $a_1,b_1,\dots,a_k,b_k$, $k\in\mathbf{N}$, для всякого натурального $m$ справедливо равенство $\mathrm{cl}(([a_1,b_1]\dots[a_k,b_k])^m)=[(2-m)/2]+mk$. При $k=1$ отсюда получается известный результат Каллера. Для конечно-порожденной группы $G$ известно понятие функции роста. Свяжем с коммутантом группы $F_2$ некоторый ряд, зависящий от двух переменных, который несет информацию не только о числе элементов имеющих заданную длину, но и о числе элементов, имеющих заданную коммутаторную длину. Формулируются несколько открытых вопросов.

УДК: 512.54

Поступило: 28.12.1998


 Англоязычная версия: Algebra and Logic, 2000, 39:4, 224–251

Реферативные базы данных:


© МИАН, 2024