Аннотация:
Изучается $\Sigma$-определимость счётных моделей над наследственно конечными ($\mathbb{HF}$-) надстройками над полями $\mathbb R$ вещественных и комплексных чисел $\mathbb C$, а также над телом кватернионов $\mathbb H$. В частности, доказывается, что любая не более чем счётная модель конечной сигнатуры, $\Sigma$-определимая над $\mathbb{HF}(\mathbb R)$ с не более чем счётными классами эквивалентности и без параметров, изоморфна вычислимой модели; что без ограничения на мощности классов представления модель уже может иметь произвольную гиперарифметическую сложность, но в любом случае она будет гиперарифметической; что любая счётная структура, $\Sigma$-определимая над $\mathbb{HF}(\mathbb C)$, возможно и с параметрами, изоморфна вычислимой модели; и что $\Sigma$-определимость над $\mathbb{HF}(\mathbb C)$ ведёт себя так же, как $\Sigma$-определимость над $\mathbb{HF}(\mathbb R)$.