RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и логика // Архив

Алгебра и логика, 2012, том 51, номер 5, страницы 638–651 (Mi al555)

Эта публикация цитируется в 1 статье

Локальная структура групп треугольных автоморфизмов относительно свободных алгебр

В. А. Романьков

Омский гос. ун-т им. Ф. М. Достоевского, г. Омск, РОССИЯ

Аннотация: Пусть $K$ – произвольное поле, $C_n$ – относительно свободная алгебра ранга $n$. В частности, в качестве $C_n$ может рассматриваться алгебра многочленов $P_n$, свободная ассоциативная алгебра $A_n$ или абсолютно свободная алгебра $F_n$. Для алгебр $C_n=P_n$, $A_n$, $F_n$ доказывается, что любая конечно порождённая подгруппа $G$ группы треугольных автоморфизмов $TC_n$ допускает точное представление матрицами над полем $K$, следовательно она финитно аппроксимируема по теореме А. И. Мальцева. Для любой алгебры $C_n$ её группа треугольных автоморфизмов $TC_n$ локально разрешима, а группа $UC_n$ унитреугольных автоморфизмов локально нильпотентна. Значит, $UC_n$ локальна (линейна и финитно аппроксимируема). Также устанавливается, что ширина коммутанта конечно порождённой подгруппы $G$ группы $UC_n$ может быть сколь угодно большой при росте $n$ или степени трансцендентности поля $K$ над простым подполем.

Ключевые слова: относительно свободная алгебра, алгебра многочленов, свободная ассоциативная алгебра, абсолютно свободная алгебра, группа (уни)треугольных автоморфизмов алгебры, матричное представление, финитная аппроксимируемость, ширина коммутанта.

УДК: 512.54

Поступило: 22.03.2012
Окончательный вариант: 13.08.2012


 Англоязычная версия: Algebra and Logic, 2012, 51:5, 425–434

Реферативные базы данных:


© МИАН, 2024