Аннотация:
Пусть $n$ – чётное число, а $q=8$ или $q>9$. Подтверждается гипотеза Томпсона (см. [Коуровская тетрадь, вопр. 12.38]) для некоторого бесконечного класса конечных простых групп типа Ли. Более точно,
если $S\in\{C_n(q),B_n(q)\}$, то каждая конечная группа $G$, для которой $Z(G)=1$ и $N(G)=N(S)$, будет изоморфна $S$. Заметим, что $N(G)=\{n\colon G$ имеет $n$-элементный класс сопряжённости$\}$. Основное следствие этого результата состоит в выполнимости $AAM$-гипотезы (см. [Коуровская тетрадь, вопр. 16.1]) для изучаемых групп.
Ключевые слова:простая группа, минимальная нормальная подгруппа, класс сопряжённости, централизатор.