Аннотация:
В основе классификаций универсальных алгебр, как правило, лежат те или иные отношения эквивалентности между ними: отношение изоморфизма, элементарной эквивалентности, эквивалентности алгебр в иных логических языках, геометрическая эквивалентность и т.д. При этом принципиально значимыми оказываются результаты, сводящие какую-либо из подобных эквивалентностей алгебр к какой-то другой. Важнейшим примером подобного рода (имеющим многочисленные приложения) является теорема о том, что любые две алгебры элементарно эквивалентны тогда и только тогда, когда изоморфны их ультрастепени по некоторым ультрафильтрам. Подобные результаты устанавливаются для различных эквивалентностей алгебр, связанных с алгебраической геометрией универсальных алгебр.