RUS  ENG
Полная версия
ЖУРНАЛЫ // Алгебра и логика // Архив

Алгебра и логика, 2013, том 52, номер 1, страницы 57–63 (Mi al571)

Эта публикация цитируется в 20 статьях

Распознаваемость знакопеременных групп по спектру

И. Б. Горшков

Ин-т матем. им. С. Л. Соболева СО РАН, пр. Ак. Коптюга, 4, г. Новосибирск, 630090, РОССИЯ

Аннотация: Спектром конечной группы называется множество порядков её элементов. Конечная группа $G$ называется распознаваемой по спектру, если любая конечная группа, спектр которой совпадает со спектром группы $G$, изоморфна $G$. Доказывается, что простые знакопеременные группы $A_n$ распознаваемы по спектру при $n\ne6,10$. Отсюда вытекает, что любая конечная группа, спектр которой совпадает со спектром конечной неабелевой простой группы, имеет не более одного неабелева композиционного фактора.

Ключевые слова: конечная группа, простая группа, знакопеременная группа, спектр группы, распознавание по спектру.

УДК: 512.542

Поступило: 18.07.2012
Окончательный вариант: 04.12.2012


 Англоязычная версия: Algebra and Logic, 2013, 52:1, 41–45

Реферативные базы данных:


© МИАН, 2024