Аннотация:
Показывается, что исследование (нетривиальных) пар неприводимых характеров группы $S_n$, имеющих одно и то же множество корней на одном из множеств $A_n$, $S_n\setminus A_n$, разделяется на три части. В частности, из этого вытекает, что любая пара таких характеров $\chi^\alpha$, $\chi^\beta$ ($\alpha$ и $\beta$ – соответствующие разбиения числа $n$) обладает следующим свойством: длины $d(\alpha)$ и $d(\beta)$ главных диагоналей диаграмм Юнга разбиений $\alpha$ и $\beta$ отличаются не более, чем на единицу.